Elliptic Curves on Abelian Surfaces
نویسنده
چکیده
The purpose of this paper is to present two theorems which give an overview of the set of elliptic curves lying on an abelian surface and to discuss several applications. One of these applications is a classical theorem of Biermann (1883) and Humbert (1893) on the characterization of abelian surfaces containing elliptic curves in terms of the “singular relations” of Humbert. As a by–product one obtains a purely algebraic description of such relations and hence also of Humbert surfaces.
منابع مشابه
On the elliptic curves of the form $ y^2=x^3-3px $
By the Mordell-Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. There is no known algorithm for finding the rank of this group. This paper computes the rank of the family $ E_p:y^2=x^3-3px $ of elliptic curves, where p is a prime.
متن کاملOn the Elliptic Curves of the Form $y^2 = x^3 − pqx$
By the Mordell- Weil theorem, the group of rational points on an elliptic curve over a number field is a finitely generated abelian group. This paper studies the rank of the family Epq:y2=x3-pqx of elliptic curves, where p and q are distinct primes. We give infinite families of elliptic curves of the form y2=x3-pqx with rank two, three and four, assuming a conjecture of Schinzel ...
متن کاملComplete characterization of the Mordell-Weil group of some families of elliptic curves
The Mordell-Weil theorem states that the group of rational points on an elliptic curve over the rational numbers is a finitely generated abelian group. In our previous paper, H. Daghigh, and S. Didari, On the elliptic curves of the form $ y^2=x^3-3px$, Bull. Iranian Math. Soc. 40 (2014), no. 5, 1119--1133., using Selmer groups, we have shown that for a prime $p...
متن کاملOn Abelian Surfaces with Potential Quaternionic Multiplication
An abelian surface A over a field K has potential quaternionic multiplication if the ring End K̄ (A) of geometric endomorphisms of A is an order in an indefinite rational division quaternion algebra. In this brief note, we study the possible structures of the ring of endomorphisms of these surfaces and we provide explicit examples of Jacobians of curves of genus two which show that our result is...
متن کاملOn an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes over higher dimensional bases over finite fields
We formulate an analogue of the conjecture of Birch and Swinnerton-Dyer for Abelian schemes with everywhere good reduction over higher dimensional bases over finite fields. We prove some conditional results for the p′-part on it, and prove the p′-part of the conjecture for constant or isoconstant Abelian schemes, in particular the p′-part for (1) relative elliptic curves with good reduction or ...
متن کامل